

Welcome to gemstone’s documentation!

The gemstone library aims to provide an easy way to develop simple and
scalable microservices by using the asynchronous features of Python.

This library offers support for writing a microservice that:

	exposes a public Json RPC 2.0 HTTP API
(see The JSON RPC 2.0 specifications [http://www.jsonrpc.org/specification])

	can protect API access based on API token identification.

	can communicate with other microservices through the JSON RPC protocol.

	can communicate with other microservices through events (messages).

This documentation is structured in multiple parts:

	Overview - General information to get you started.

	Topics - A compilation in-depth explanations on various topics of interest.

	Reference - The reference to the classes, functions, constants that can be used.

See also

	JSON RPC 2.0 specifications: http://www.jsonrpc.org/specification

	Tornado: http://www.tornadoweb.org/en/stable/

Hello world

In a script hello_world.py write the following:

import gemstone

class HelloWorldService(gemstone.MicroService):
 name = "hello_world_service"
 host = "127.0.0.1"
 port = 8000

 @gemstone.exposed_method()
 def say_hello(self, name):
 return "hello {}".format(name)

if __name__ == '__main__':
 service = HelloWorldService()
 service.start()

We have now a microservice that exposes a public method say_hello and returns
a "hello {name}".

What we did is the following:

	declared the class of our microservice by inheriting gemstone.MicroService

	assigned a name for our service (this is required)

	assigned the host and the port where the microservice should listen

	exposed a method by using the gemstone.exposed_method() decorator.

	after that, when the script is directly executed, we start the service by calling
the gemstone.MicroService.start() method.

To run it, run script

python hello_world.py

Now we have the service listening on http://localhost:8000/api (the default configuration
for the URL endpoint). In order to test it, you have to do a HTTP POST request to
that address with the content:

curl -i -X POST \
 -H "Content-Type:application/json" \
 -d '{"jsonrpc": "2.0","id": 1,"method": "say_hello","params": {"name": "world"}}' \
 'http://localhost:8000/api'

The answer should be

{"result": "hello world", "error": null, "jsonrpc": "2.0", "id": 1}

Table of contents:

	Overview
	Overview

	Installation

	Creating a microservice

	Interacting with services

	Examples

	Using a template for writing a microservice

	Topics
	RPC communication via JSON RPC 2.0

	Publisher-subscriber pattern

	Service discovery

	Configurable features

	Reference
	The gemstone module (main classes)

	Token validation strategies

	Configurables and configurators

	Event transports

	Utility classes and functions

	Changes
	0.10.1 (27.03.2017)

	0.10.0 (23.03.2017)

Todo

Make this use self.io_loop to resolve the request. The current
implementation is blocking and slow

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/gemstone/envs/stable/lib/python3.5/site-packages/gemstone-0.10.1-py3.5.egg/gemstone/core/microservice.py:docstring of gemstone.MicroService.get_service, line 7.)

Indices and tables

	Index

	Module Index

	Search Page

Overview

	Overview
	Motivation

	Few words ahead

	Features

	Installation

	Creating a microservice
	Basic example

	Customize the microservice

	Interacting with services
	Through raw HTTP requests

	Through the gemstone.RemoteService class

	Using a service registry

	Via the gemstone executable

	Examples

	Using a template for writing a microservice
	Quick usage

Overview

Motivation

In the past years, the microservice-based architecture became very popular in the computing field.
Although this architecture grew more and more popular, there are a few tools that can help an
individual to build such systems. The current alternatives are using nameko [https://github.com/nameko/nameko]
or by building a web application that acts like a microservice. I started developing this framework in order
to provide a tool for creating and managing such systems with ease, and that are capable of being specialized in
a certain role, be it entity management, data storage or just computing.

Few words ahead

This library uses the asynchronous features of the Tornado web framework for creating a JSON RPC endpoint through which
one can call exposed methods. The method calls are treated asynchronously. If you have no knowledge about asynchronous
programming in Python, I suggest to read a few words from the Tornado documentation [http://www.tornadoweb.org/en/stable/] .

Although it is not required for you to know about all that coroutines and event loop theory, it sure helps to understand
what happens under the hood.

Features

The main features of this framework are:

	microservices that communicate over JSON RPC 2.0 protocol.

	possibility to extend with custom functionality (via Tornado request handlers)

	automatic service discovery

	dynamic configuration (no need to modify the code to change the running parameters)

	support for the publisher-subscriber communication pattern

Installation

The library can be installed via pip

pip install gemstone

or from source files

git clone https://github.com/vladcalin/gemstone.git
cd gemstone
python setup.py install

Creating a microservice

Basic example

In order to create a simple microservice, you have to subclass the gemstone.MicroService
base class:

class HelloWorldService(MicroService):
 name = "hello.world.service"
 host = "127.0.0.1"
 port = 5000

 @public_method
 def say_hello(self, name):
 return "hello {}".format(name)

 @private_api_method
 def say_private_hello(self, name):
 return "this is secret: hello {}".format(name)

 def api_token_is_valid(self, api_token):
 return api_token == "hello_world_token"

if __name__ == '__main__':
 service = HelloWorldService()
 service.start()

After you created your service, run the script that contains it and enjoy.

Exposing public methods

Public methods can be exposed by decorating them with the gemstone.public_method() decorator

class MyMicroService(MicroService):

 # stuff

 @public_method
 def exposed_public_method(self):
 return "it works!"

 # more stuff

Exposing private methods

In order to expose private methods, we have to decorate them with the gemstone.private_api_method().
These methods can be accessed only by providing a valid Api Token with the request. In addition, we must override the
gemstone.MicroService.api_token_is_valid() method to implement the token validation logic

class MyMicroService(MicroService):

 # stuff

 @private_api_method
 def exposed_private_method(self):
 return "it works!"

 def api_token_is_valid(self, api_token):
 return api_token == "correct_token"

 # more stuff

Customize the microservice

We can define various specifications for our microservice. The following class attributes can be overridden
to customize the behavior of our microservice.

Required attributes

	gemstone.MicroService.name is required and defines the name of the microservice.
MUST be defined by the concrete implementation, otherwise an error will be thrown at startup

Specifying different host, port and location

	gemstone.MicroService.host - specifies the address to bind to (hostname or IP address).
Defaults to 127.0.0.1.

	gemstone.MicroService.port - an int that specifies the port to bind to.
Defaults to 8000

	gemstone.MicroService.endpoint - a string representing the url where the service api will be accessible.
Defaults to "/api", so by default, the service will be accessible at http://{host}:{port}/api.

	gemstone.MicroService.accessible_at - a string representing a http(s) address
specifying a custom location where the service can be found. If at least one service registry is configured,
the service will send this value to it so that other services can access at the specified location.

Example: "http://2a330155abfc.myservice.com/workers/api"

For example, it is useful when the service runs behind a load balancer and the
gemstone.MicroService.accessible_at attribute will point to the address of the load balancer,
so that when another service queries the registry for this service, it will access the
load balancer instead.

Event dispatching

	gemstone.MicroService.event_transports - a list of gemstone.event.transport.BaseEventTransport.
See Event transports for available implementations and Publisher-subscriber pattern for usage.

Other options

	gemstone.MicroService.validation_strategies - a list of validation strategy instances
that will be used to extract the api token that will be forwarded to the MicroService.api_token_is_valid
method. Defaults to [HeaderValidationStrategy(header="X-Api-Token", template=None)]

See Token validation strategies for more details, available options and how to implement custom validation
strategies

If multiple strategies are specified, they will be run in the order they are defined until the first one
extracts a value which is not None.

In order to interact with a service that uses a validation strategy, we have to specify
the proper arguments in the gemstone.RemoteService constructor (See the class definition for more
info on this).

New in version 0.3.0.

	gemstone.MicroService.max_parallel_blocking_tasks - the number of threads that
will handle blocking actions (function calls). Defaults to os.cpu_count().

Adding web application functionality

There might be situations when we want to extend the functionality of
the microservice so that it will display some stats on some pages (or other scenarios).
This library provides a way to quickly add behaviour that is not API-related.

	gemstone.MicroService.static_dirs - a list of (str, str) tuples that represent the
URL to which the static directory will be mapped, and the path of the directory that contain the static files.
For example, if the directory /home/user/www/static contains the file index.html, and we specify the static dir
attribute with the value [("/static", "/home/user/www/static")], the service will serve index.html at the
URL /static/index.html.

	gemstone.MicroService.extra_handlers - a list of tuples of URLs and Tornado request handlers to
be included in the service.

Note

Make sure that no other handle overwrites the endpoint of the service.

	gemstone.MicroService.template_dir - a directory where templates will be searched in, when, in a
custom handler we render a template via tornado.web.RequestHandler.render().

Periodic tasks

	gemstone.MicroService.periodic_tasks - a list of function - interval (in seconds) mappings that
schedules the given function to be executed every given seconds

def periodic_func():
 print("hello there")

class MyService(MicroService):

 # stuff

 periodic_tasks = [(periodic_func, 1)]

 # stuff

In te above example, the periodic_func will be executed every second.

Note

There might be a little delay in the execution of the function, depending on the main event loop availability.
See the Tornado documentation on PeriodicCallback [http://www.tornadoweb.org/en/stable/ioloop.html#tornado.ioloop.PeriodicCallback]
for more details.

Note

If you want to pass parameters to a function, you can use the functools.partial() to specify the
parameters for the function to be called with.

Using a service registry

A service registry is a remote service that keeps mappings of service names and network locations, so that each
microservice will be able to locate another one dynamically. A service can be a service registry if it exposes
via JSON RPC a ping(name, url) method and a locate_service(name) method.

	gemstone.MicroService.service_registry_urls - a list of URLS where a service registry is located and
accessible via JSON RPC.

service_registry_urls = ["http://registry.domain.com:8000/api", "http://registry.domain2.com"]

On service startup, a ping will be sent to the registry, and after that, a ping will be sent periodically.

	gemstone.MicroService.service_registry_ping_interval - the interval (in seconds) when the
service will ping the registry. Defaults to 30 seconds.

service_registry_ping_interval = 120 # ping every two minutes

Generating a command-line interface

See gemstone.MicroService.get_cli() for more details.

Interacting with services

There are a few methods to communicate with microservices. This framework, being written
around the JSON RPC protocol, allows microservices to be easily integrated with each other.

Through raw HTTP requests

First method to interact with a service is through raw HTTP requests. All you have to do is
making a POST request to http://service_ip:service_port/api with:

	
	the headers

	
	Content-Type: application/json

	the content

{
 "jsonrpc": "2.0"
 "method": "the_name_of_the_method",
 "params": {
 "param_name": "value",
 "param_name_2": "value2"
 },
 "id": 1,
}

or

{
 "jsonrpc": "2.0"
 "method": "the_name_of_the_method",
 "params": ["value1", "value2"],
 "id": 1,
}

If you want to send a notification (you don’t care about the answer, don’t include the "id" field in the
request.

Note

See the JSON RPC 2.0 specifications [http://www.jsonrpc.org/specification] for more details.

Through the gemstone.RemoteService class

This library offers the gemstone.RemoteService class to interact with other
services programmatically.

Example

client = RemoteService("http://127.0.0.1:5000/api")

print(client.name) # "hello.world.service"
print(client.methods.say_hello("world")) # "hello world"
print(client.notifications.say_hello("world")) # None -> we sent a notification, therefore discarding the result

In addition, this class provides a method to asynchronously call methods by passing
an extra keyword argument __async as shown in the following example

async_response = client.methods.say_hello("world", __async=True)

print(async_response)
<AsyncMethodCall ...>

async_response.wait()
print(async_response.finished())
True
print(async_response.result())
"hello world"
print(async_response.error())
None

See also

	gemstone.client.remote_service.AsyncMethodCall,

	gemstone.as_completed(),

	gemstone.first_completed()

	gemstone.make_callbacks()

Using a service registry

We can configure a microservice to use a service registry. A service registry is a service that help services
identify other services without needing to know their exact location (services are identified by name).

A service registry can be a client that exposes via JSON RPC 2.0 the methods: ping(name, host, port)
and locate_service(name).

In order for a service to make use of a service registry, we must override the
gemstone.MicroService.service_registry_urls class attribute.

When we do that, a periodic task will spawn when the service starts that calls the ping method
of the remote service, every gemstone.MicroService.service_registry_ping_interval seconds.

Note

A service can use multiple service registries. When multiple service registries are used, the service will
send ping requests to all of them with the specified delay between them.

Example:

class ExampleService(MicroService):
 name = "example.1"

 # stuff

 service_registries_urls = ["http://reg.hostname:5000/api", "http://reg.hostname2:8000/api"]

 # more stuff

 @public_method
 def say_hello(self, name):
 return "hello {}".format(name)

 # even more stuff

When at least one service registry is used, we can use the gemstone.MicroService.get_service() method
to identify a service by name (or glob pattern). For example, if we call the method with the "myservice.workers.*"
pattern, it will match "myservice.workers.01", "myservice.workers.02" and "myservice.workers.03".

Via the gemstone executable

We can interact with the gemstone executable using the call command:

Usage: gemstone call [OPTIONS] NAME METHOD [PARAMS]...

Options:
 --registry TEXT The service registry URL used for queries
 --help Show this message and exit.

The registry option specifies the URL where a service registry is accessible. For example: "http://192.168.0.1:8000/api".

	NAME - a glob pattern for the service you want to interact. Keep in mind that in the glob syntax, * matches
a sequence of characters while ? matches a single character.

	METHOD - the name of the method to call

	PARAMS - parameters for the call in the format name=value. Current implementation supports only simple
string values. In other words you can only send values in the format key=some_value that will be translated
to func(key="some_value" ...). You can specify multiple parameters

Example:

gemstone call --registry=http://localhost:8000/api servicename say_hello name=world
calls servicename.say_hello with the parameter name="world"

But if we want to interact with a service without having a service registry, we can use the call_raw command

Usage: gemstone call_raw [OPTIONS] URL METHOD [PARAMS]...

Options:
 --help Show this message and exit.

	URL - a valid http(s) url where the service is located.

	METHOD - the name of the method to be called

	PARAMS - same as above

Example:

gemstone.exe call_raw http://service.local/api get_service_specs
[!] Service identification: 0.12918 seconds
[!] Method call: 0.01701 seconds
[!] Result:

{'host': '0.0.0.0',
 'max_parallel_blocking_tasks': 4,
 ...

Examples

In the examples directory you can find some examples of microservices

	example_client - an example usage of the gemstone.RemoteService class for communication
with microservices.

There you will find two files: service.py and client.py

In service.py you have a basic microservice that exposes two methods: say_hello(name) and
slow_method(seconds). You can start it with the command

python service.py

In client.py you can find some basic interaction with the service started above.

	example_events - an example for the publisher-subscribe pattern in the microservice communication. There are
two files: service.py and service2.py. You can start them with the commands

Warning

You are going to need a RabbitMQ server running somewhere because the example uses it as message exchange transport

python service.py
python service2.py

Note

Those two commands must be executed in separate terminals/cmds because they are blocking.

What happens here is:

	the service.py subscribes to "said_hello" events.

	the service2.py exposes a public method say_hello(name). When called, emits an "said_hello" event and then
processes the request.

After that, you can send a JSONRPC request to http://127.0.0.1:8000/api with the body

{
 "jsonrpc": "2.0",
 "method": "say_hello",
 "params": {"name": "world"},
 "id": 1
}

and watch what happens.

Using a template for writing a microservice

There is the gemstone-template [https://github.com/vladcalin/gemstone-template] cookiecutter template
for easily setting up a microservice. Check out its readme for more info.

Quick usage

pip install cookiecutter gemstone
git clone https://github.com/vladcalin/gemstone-template.git
cookiecutter ./gemstone-template

answer the questions
Name: myservice
Author: Me
Version: 1.0
Short description: None

Now we have the myservice directory with the new service

pip install myservice
myservice start --host=0.0.0.0 --port=8000

now our first service is up and running

the service logic is in myservice/service.py
if you want to create extra handlers (for a web interface for example)
add them to myservice/handlers
static files are in myservice/html/static
templates are in myservice/html/templates

Enjoy!

Topics

Various topics of interest

	RPC communication via JSON RPC 2.0
	The implementation

	Public methods

	Private methods

	Interacting with the microservice

	Interacting with another microservice

	FAQ

	Publisher-subscriber pattern

	Service discovery

	Configurable features

RPC communication via JSON RPC 2.0

Note

Check out the JSONRPC 2.0 protocol specifications [http://www.jsonrpc.org/specification] .

The implementation

The RPC functionality is provided by the gemstone.TornadoJsonRpcHandler. It is important to
note that the methods are not executed in the main thread, but in a concurrent.features.ThreadPoolExecutor.

In order to create a basic microservice, you have to create a class that inherits the
gemstone.MicroService class as follows

import gemstone

class MyMicroService(gemstone.MicroService):

 name = "hello_world_service"
 ...

Check out the gemstone.MicroService documentation or Creating a microservice
for the available attributes

Public methods

TODO

Private methods

TODO

Interacting with the microservice

TODO

Interacting with another microservice

TODO

FAQ

TODO

Publisher-subscriber pattern

TODO

Service discovery

TODO

Configurable features

TODO

Reference

Reference

	The gemstone module (main classes)
	Core classes

	Decorators

	Request handlers

	Token validation strategies

	Configurables and configurators
	Configurable

	Configurators

	Event transports

	Utility classes and functions

The gemstone module (main classes)

Core classes

	
class gemstone.MicroService(io_loop=None)

	The base class for implementing microservices.

	Parameters:	io_loop – A tornado.ioloop.IOLoop instance -
can be used to share the same io loop between
multiple microservices running from the same process.

Attributes

You can (and should) define various class attributes in order
to provide the desired functionality for your microservice.
These attributes can be configured at runtime by using
the configurable sub-framework (read more at Configurable features)

Identification

	
MicroService.name = None

	The name of the service. Is required.

	
MicroService.host = '127.0.0.1'

	The host where the service will listen

	
MicroService.port = 8000

	The port where the service will bind

	
MicroService.endpoint = '/api'

	The path in the URL where the microservice JSON RPC endpoint will be accessible.

	
MicroService.accessible_at = None

	The url where the service can be accessed by other microservices.
Useful when using a service registry.

Access validation

See also

Private methods

Event dispatching

	
MicroService.event_transports = []

	A list of Event transports that will enable the Event dispatching feature.

See also

	Publisher-subscriber pattern

	Event transports

Dynamic configuration

	
MicroService.skip_configuration = False

	Flag that if set to True, will disable the configurable sub-framework.

	
MicroService.configurables = [<Configurable name=port>, <Configurable name=host>, <Configurable name=accessible_at>, <Configurable name=endpoint>]

	A list of configurable objects that allows the service’s running parameters to
be changed dynamically without changing its code.

	
MicroService.configurators = [<CommandLineConfigurator>]

	A list of configurator objects that will extract in order values for
the defined configurators

See also

Configurables and configurators

Web application functionality

	
MicroService.extra_handlers = []

	A list of extra Tornado handlers that will be included in the
created Tornado application.

	
MicroService.template_dir = '.'

	Template directory used by the created Tornado Application.
Useful when you plan to add web application functionality
to the microservice.

	
MicroService.static_dirs = []

	A list of directories where the static files will looked for.

Periodic tasks

	
MicroService.periodic_tasks = []

	A list of (callable, time_in_seconds) that will enable periodic task execution.

Service auto-discovery

	
MicroService.service_registry_urls = []

	A list of service registry complete URL which will enable service auto-discovery.

	
MicroService.service_registry_ping_interval = 30

	Interval (in seconds) when the microservice will ping all the service registries.

Misc

	
MicroService.max_parallel_blocking_tasks = 4

	How many methods can be executed in parallel at the same time. Note that every blocking
method is executed in a concurrent.features.ThreadPoolExecutor

Methods

Can be overridden

	
MicroService.on_service_start()

	Override this method to do a set of actions when the service starts

	Returns:	None

	
MicroService.get_logger()

	Override this method to designate the logger for the application

	Returns:	a logging.Logger instance

Can be called

	
MicroService.get_service(name)

	Locates a remote service by name. The name can be a glob-like pattern
("project.worker.*"). If multiple services match the given name, a
random instance will be chosen. There might be multiple services that
match a given name if there are multiple services with the same name
running, or when the pattern matches multiple different services.

Todo

Make this use self.io_loop to resolve the request. The current
implementation is blocking and slow

	Parameters:	name – a pattern for the searched service.

	Returns:	a gemstone.RemoteService instance

	Raises:	
	ValueError – when the service can not be located

	ServiceConfigurationError – when there is no configured discovery strategy

	
MicroService.start_thread(target, args, kwargs)

	Shortcut method for starting a thread.

	Parameters:	
	target – The function to be executed.

	args – A tuple or list representing the positional arguments for the thread.

	kwargs – A dictionary representing the keyword arguments.

New in version 0.5.0.

	
MicroService.emit_event(event_name, event_body, *, broadcast=True)

	Publishes an event of type event_name to all subscribers, having the body
event_body. The event is pushed through all available event transports.

The event body must be a Python object that can be represented as a JSON.

	Parameters:	
	event_name – a str representing the event type

	event_body – a Python object that can be represented as JSON.

	broadcast – flag that specifies if the event should be received by
all subscribers or only by one

New in version 0.5.0.

Changed in version 0.10.0: Added parameter broadcast

	
MicroService.get_current_configuration()

	

	
MicroService.make_tornado_app()

	Creates a :py:class`tornado.web.Application` instance that respect the
JSON RPC 2.0 specs and exposes the designated methods. Can be used
in tests to obtain the Tornado application.

	Returns:	a tornado.web.Application instance

	
MicroService.start()

	The main method that starts the service. This is blocking.

	
class gemstone.RemoteService(service_endpoint, *, authentication_method=None)

	

Decorators

	
gemstone.exposed_method(name=None, private=False, is_coroutine=True, requires_handler_reference=False, **kwargs)

	Marks a method as exposed via JSON RPC.

	Parameters:	
	name – the name of the exposed method. Must contains only letters, digits, dots and underscores.
If not present or is set explicitly to None, this parameter will default to the name
of the exposed method.
If two methods with the same name are exposed, a ValueError is raised.

	public – Flag that specifies if the exposed method is public (can be accessed without token)

	private – Flag that specifies if the exposed method is private.

	is_coroutine – Flag that specifies if the method is a Tornado coroutine. If True, it will be wrapped
with the tornado.gen.coroutine() decorator.

	kwargs – Not used.

New in version 0.9.0.

	
gemstone.event_handler(event_name)

	Decorator for designating a handler for an event type. event_name must be a string
representing the name of the event type.

The decorated function must accept a parameter: the body of the received event,
which will be a Python object that can be encoded as a JSON (dict, list, str, int,
bool, float or None)

	Parameters:	event_name –

	Returns:	

	
gemstone.public_method(func)

	Decorates a method to be exposed from a gemstone.PyMicroService concrete
implementation. The exposed method will be public.

Deprecated since version 0.9.0: Use exposed_method() instead.

	
gemstone.private_api_method(func)

	Decorates a method to be exposed (privately) from a gemstone.PyMicroService
concrete implementation. The exposed method will be private.

Deprecated since version 0.9.0: Use exposed_method() instead.

	
gemstone.requires_handler_reference(func)

	Marks a method tha requires access to the gemstone.TornadoJsonRpcHandler instance
when calling the request. If a method is decorated with this, when it is called it will
receive a handler argument as the first argument.

Useful when you need to do specific operations such as setting a cookie,
setting a secure cookie, get the current_user of the request, etc.

Deprecated since version 0.9.0: Use exposed_method() instead.

Request handlers

	
class gemstone.GemstoneCustomHandler(*args, **kwargs)

	Base class for custom Tornado handlers that
can be added to the microservice.

Offers a reference to the microservice through the self.microservice attribute.

	
class gemstone.TornadoJsonRpcHandler(*args, **kwargs)

	
	
call_method(method)

	Calls a blocking method in an executor, in order to preserve the non-blocking behaviour

If method is a coroutine, yields from it and returns, no need to execute in
in an executor.

	Parameters:	method – The method or coroutine to be called (with no arguments).

	Returns:	the result of the method call

	
handle_single_request(request_object)

	Handles a single request object and returns the correct result as follows:

	A valid response object if it is a regular request (with ID)

	None if it was a notification (if None is returned, a response object with
“received” body was already sent to the client.

	Parameters:	request_object – A gemstone.core.structs.JsonRpcRequest object
representing a Request object

	Returns:	A gemstone.core.structs.JsonRpcResponse object representing a
Response object or None if no response is expected (it was a notification)

	
prepare_method_call(method, args)

	Wraps a method so that method() will call method(*args) or method(**args),
depending of args type

	Parameters:	
	method – a callable object (method)

	args – dict or list with the parameters for the function

	Returns:	a ‘patched’ callable

	
write_single_response(response_obj)

	Writes a json rpc response {"result": result, "error": error, "id": id}.
If the id is None, the response will not contain an id field.
The response is sent to the client as an application/json response. Only one call per
response is allowed

	Parameters:	response_obj – A Json rpc response object

	Returns:	

Token validation strategies

Configurables and configurators

In the context of this framework, configurables are
entities that designate what properties of the microservice
can be dynamically set and configurators are strategies
that, on service startup, collects the required
properties from the environment.

Currently, the available confugurators are:

	gemstone.config.configurator.CommandLineConfigurator - collects values from
the command line arguments

	gemstone.config.configurator.JsonFileConfigurator - collects values from a JSON file

In order to specify configurables for the microservice, you have to provide
set the gemstone.MicroService.configurables attribute to a list of
Configurable objects.

Configurators are specified in the gemstone.MicroService.configurators attribute.
On service startup, each configurator tries to extract the required values from the environment in
the order they are defined.

Configurable

	
class gemstone.config.configurable.Configurable(name, *, template=None)

	Defines a configurable value for the application.

Example (You should not use configurables in this way unless
you are writing a custom Configurator)

c = Configurable("test", template=lambda x: x * 2)
c.set_value("10")
c.get_final_value() # int("10") * 2 -> 20

c2 = Configurable("list_of_ints", template=lambda x: [int(y) for y in x.split(",")])
c.set_value("1,2,3,4,5")
c.get_final_value() # [1,2,3,4,5]

	Parameters:	
	name – The name of the configurable parameter

	template – A callable template to apply over the extracted value

Configurators

	
class gemstone.config.configurator.BaseConfigurator

	Base class for defining configurators. A configurator is a class that, starting
from a set of name-configurable pairs, depending on the configurables’ options
and the environment, builds a configuration for the application.

	
load()

	Loads the configuration for the application

	
class gemstone.config.configurator.CommandLineConfigurator

	Configurator that collects values from command line arguments.
For each registered configurable, will attempt to get from command line
the value designated by the argument --name where name is the name of the
configurable.

Example

For the configurables

	Configurator(“a”)

	Configurator(“b”, type=int)

	Configurator(“c”, type=bool)

the following command line interface will be exposed

usage: service.py [-h] [--a A] [--b B] [--c C]

optional arguments:
 -h, --help show this help message and exit
 --a A
 --b B
 --c C

The service.py can be called like this

python service.py --a=1 --b=2 --c=true

Event transports

Utility classes and functions

	
class gemstone.client.remote_service.AsyncMethodCall(req_obj, async_resp_object)

	
	
result(wait=False)

	Gets the result of the method call. If the call was successful,
return the result, otherwise, reraise the exception.

	Parameters:	wait – Block until the result is available, or just get the result.

	Raises:	RuntimeError when called and the result is not yet available.

	
gemstone.as_completed(*async_result_wrappers)

	Yields results as they become available from asynchronous method calls.

Example usage

async_calls = [service.call_method_async("do_stuff", (x,)) for x in range(25)]

for async_call in gemstone.as_completed(*async_calls):
 print("just finished with result ", async_call.result())

	Parameters:	async_result_wrappers – gemstone.client.structs.AsyncMethodCall instances.

	Returns:	a generator that yields items as soon they results become available.

New in version 0.5.0.

	
gemstone.first_completed(*async_result_wrappers)

	Just like gemstone.as_completed(), but returns only the first item and discards the
rest.

	Parameters:	async_result_wrappers –

	Returns:	

New in version 0.5.0.

	
gemstone.make_callbacks(async_result_wrappers, on_result, on_error, run_in_threads=False)

	Monitors the gemstone.client.remote_service.AsyncMethodCall instances from async_result_wrappers
and apply callbacks depending on their outcome.

	Parameters:	
	async_result_wrappers – An iterable of gemstone.client.remote_service.AsyncMethodCall

	on_result – a callable that takes a single positional argument (the result)

	on_error – a callabke that takes a single positional argument (the error)

	run_in_threads – flag tha specifies if the callbacks should be called in the current thread or in background
threads

New in version 0.5.0.

Changes

0.10.1 (27.03.2017)

	removed some forgotten debug messages

0.10.0 (23.03.2017)

	added broadcast parameter to MicroService.emit_event

	added the broadcast parameter to BaseEventTransport.emit_event

	added the broadcast parameter to RabbitMqEventTransport.emit_event

	improved tests and documentation

	removed mappings and type parameters from Configurable

	added gemstone.Module for better modularization of the microservice

	added gemstone.MicroService.authenticate_request method for a more flexible
authentication mechanism

	deprecated gemstone.MicroService.api_token_is_valid method

0.9.0 (06.03.2017

	
	added the gemstone.exposed_method decorator for general usage that allows

	
	to customize the name of the method

	to specify if the method is a coroutine

	to specify that the method requires a handler reference

	to specify that the method is public or private

	
	deprecated

	
	gemstone.public_method decorator

	gemstone.private_api_method decorator

	gemstone.async_method decorator

	gemstone.requires_handler_reference decorator

	removed gemstone.MicroService.get_cli method in favor of the CommandLineConfigurator

	improved documentation a little bit

0.8.0 (05.03.2017)

	added the gemstone.requires_handler_reference decorator to enable
the methods to get a reference to the Tornado request handler when called.

	added the gemstone.async_method decorator to make a method a coroutine
and be able to execute things asynchronously on the main thread.
For example, a method decorated with async_method will be able to
yield self._executor.submit(make_some_network_call) without blocking the main
thread.

	
	added two new examples:

	
	example_coroutine_method - shows a basic usage if the async_method decorator

	example_handler_ref - shows a basic usage if the requires_handler_reference decorator

0.7.0 (27.02.2017)

	added gemstone.GemstoneCustomHandler class

	modified the way one can add custom Tornado handler to the microservice.
Now these handlers must inherit gemstone.GemstoneCustomHandler

	restructured docs, now it is based more on docstrings

	improved tests and code quality

0.6.0 (14.02.2017)

	
	added configurable framework:

	
	gemstone.config.configurable.Configurable class

	gemstone.config.configurator.* classes

	gemstone.MicroService.configurables and gemstone.MicroService.configurators attributes

	switched testing to pytest

	improved documentation (restructured and minor additions). Still a work in progress

0.5.0 (09.02.2017)

	
	added support for publisher-subscriber communication method:

	
	base class for event transports: gemstone.event.transport.BaseEventTransport

	first concrete implementation: gemstone.event.transport.RabbitMqEventTransport

	gemstone.MicroService.emit_event for publishing an event

	gemstone.event_handler decorator for designating event handlers

	restructured documentation (added tutorial, examples and howto sections).

	added asynchronous method calls in gemstone.RemoteService.

	added gemstone.as_completed, gemstone.first_completed, gemstone.make_callbacks
utility functions for dealing with asynchronous method calls.

0.4.0 (25.01.2017)

	modified accessible_at attribute of the gemstone.MicroService class

	added the endpoint attribute to the gemstone.MicroService class

	improved how the microservice communicates with the service registry

0.3.1 (25.01.2017)

	fixed event loop freezing on Windows

	fixed a case when a TypeError was silenced when handling the bad parameters error
in JSON RPC 2.0 handler (#21)

	major refactoring (handling of JSON RPC objects as Python objects instead of dicts and lists)
to improve readability and maintainability

	improved documentation

0.3.0 (23.01.2017)

	added validation strategies (method for extraction of api token from the request)

	base subclass for implementing validation strategies

	built in validation strategies: HeaderValidationStrategy, BasicCookieStrategy

	improved documentation

0.2.0 (17.01.2017)

	added gemstone.RemoteService.get_service_by_name method

	added call command to cli

	added call_raw command to cli

	improved documentation a little

0.1.3 (16.01.2017)

	fixed manifest to include required missing files

0.1.2 (16.01.2017)

	added py36 to travis-ci

	refactored setup.py and reworked description files and documentation for better rendering

0.1.1 (13.01.2017)

	changed the name of the library from pymicroservice to gemstone

	added the gemstone.MicroService.accessible_at attribute

0.1.0 (09.01.2017)

	added the pymicroservice.PyMicroService.get_cli method

	improved documentation a little bit

0.0.4

	fixed bug when sending a notification that would result in an error
was causing the microservice to respond abnormally (see #10)

	fixed a bug that was causing the service to never respond with the
invalid parameters status when calling a method with invalid parameters

0.0.3

	added pymicroservice.RemoteService class

	added the pymicroservice.PyMicroService.get_service(name)

	improved documentation

Index

 A
 | B
 | C
 | E
 | F
 | G
 | H
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | W

A

 	
 	accessible_at (gemstone.MicroService attribute)

 	
 	as_completed() (in module gemstone)

 	AsyncMethodCall (class in gemstone.client.remote_service)

B

 	
 	BaseConfigurator (class in gemstone.config.configurator)

C

 	
 	call_method() (gemstone.TornadoJsonRpcHandler method)

 	CommandLineConfigurator (class in gemstone.config.configurator)

 	
 	Configurable (class in gemstone.config.configurable)

 	configurables (gemstone.MicroService attribute)

 	configurators (gemstone.MicroService attribute)

E

 	
 	emit_event() (gemstone.MicroService method)

 	endpoint (gemstone.MicroService attribute)

 	event_handler() (in module gemstone)

 	
 	event_transports (gemstone.MicroService attribute)

 	exposed_method() (in module gemstone)

 	extra_handlers (gemstone.MicroService attribute)

F

 	
 	first_completed() (in module gemstone)

G

 	
 	GemstoneCustomHandler (class in gemstone)

 	get_current_configuration() (gemstone.MicroService method)

 	
 	get_logger() (gemstone.MicroService method)

 	get_service() (gemstone.MicroService method)

H

 	
 	handle_single_request() (gemstone.TornadoJsonRpcHandler method)

 	
 	host (gemstone.MicroService attribute)

L

 	
 	load() (gemstone.config.configurator.BaseConfigurator method)

M

 	
 	make_callbacks() (in module gemstone)

 	make_tornado_app() (gemstone.MicroService method)

 	
 	max_parallel_blocking_tasks (gemstone.MicroService attribute)

 	MicroService (class in gemstone)

N

 	
 	name (gemstone.MicroService attribute)

O

 	
 	on_service_start() (gemstone.MicroService method)

P

 	
 	periodic_tasks (gemstone.MicroService attribute)

 	port (gemstone.MicroService attribute)

 	
 	prepare_method_call() (gemstone.TornadoJsonRpcHandler method)

 	private_api_method() (in module gemstone)

 	public_method() (in module gemstone)

R

 	
 	RemoteService (class in gemstone)

 	
 	requires_handler_reference() (in module gemstone)

 	result() (gemstone.client.remote_service.AsyncMethodCall method)

S

 	
 	service_registry_ping_interval (gemstone.MicroService attribute)

 	service_registry_urls (gemstone.MicroService attribute)

 	skip_configuration (gemstone.MicroService attribute)

 	
 	start() (gemstone.MicroService method)

 	start_thread() (gemstone.MicroService method)

 	static_dirs (gemstone.MicroService attribute)

T

 	
 	template_dir (gemstone.MicroService attribute)

 	
 	TornadoJsonRpcHandler (class in gemstone)

W

 	
 	write_single_response() (gemstone.TornadoJsonRpcHandler method)

 _static/down-pressed.png

_static/comment.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Welcome to gemstone's documentation!

 		Overview

 		Overview

 		Motivation

 		Few words ahead

 		Features

 		Installation

 		Creating a microservice

 		Basic example

 		Customize the microservice

 		Interacting with services

 		Through raw HTTP requests

 		Through the gemstone.RemoteService class

 		Using a service registry

 		Via the gemstone executable

 		Examples

 		Using a template for writing a microservice

 		Quick usage

 		Topics

 		RPC communication via JSON RPC 2.0

 		The implementation

 		Public methods

 		Private methods

 		Interacting with the microservice

 		Interacting with another microservice

 		FAQ

 		Publisher-subscriber pattern

 		Service discovery

 		Configurable features

 		Reference

 		The gemstone module (main classes)

 		Core classes

 		Decorators

 		Request handlers

 		Token validation strategies

 		Configurables and configurators

 		Configurable

 		Configurators

 		Event transports

 		Utility classes and functions

 		Changes

 		0.10.1 (27.03.2017)

 		0.10.0 (23.03.2017)

 		0.9.0 (06.03.2017

 		0.8.0 (05.03.2017)

 		0.7.0 (27.02.2017)

 		0.6.0 (14.02.2017)

 		0.5.0 (09.02.2017)

 		0.4.0 (25.01.2017)

 		0.3.1 (25.01.2017)

 		0.3.0 (23.01.2017)

 		0.2.0 (17.01.2017)

 		0.1.3 (16.01.2017)

 		0.1.2 (16.01.2017)

 		0.1.1 (13.01.2017)

 		0.1.0 (09.01.2017)

 		0.0.4

 		0.0.3

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

